A Tutorial on the Expectation-Maximization Algorithm Including Maximum-Likelihood Estimation and EM Training of Probabilistic Context-Free Grammars
نویسنده
چکیده
The paper gives a brief review of the expectation-maximization algorithm (Dempster, Laird, and Rubin 1977) in the comprehensible framework of discrete mathematics. In Section 2, two prominent estimation methods, the relative-frequency estimation and the maximum-likelihood estimation are presented. Section 3 is dedicated to the expectation-maximization algorithm and a simpler variant, the generalized expectation-maximization algorithm. In Section 4, two loaded dice are rolled. A more interesting example is presented in Section 5: The estimation of probabilistic context-free grammars. Enjoy!
منابع مشابه
The Development of Maximum Likelihood Estimation Approaches for Adaptive Estimation of Free Speed and Critical Density in Vehicle Freeways
The performance of many traffic control strategies depends on how much the traffic flow models have been accurately calibrated. One of the most applicable traffic flow model in traffic control and management is LWR or METANET model. Practically, key parameters in LWR model, including free flow speed and critical density, are parameterized using flow and speed measurements gathered by inductive ...
متن کاملThe Development of Maximum Likelihood Estimation Approaches for Adaptive Estimation of Free Speed and Critical Density in Vehicle Freeways
The performance of many traffic control strategies depends on how much the traffic flow models are accurately calibrated. One of the most applicable traffic flow model in traffic control and management is LWR or METANET model. Practically, key parameters in LWR model, including free flow speed and critical density, are parameterized using flow and speed measurements gathered by inductive loop d...
متن کاملRNA Structure Prediction Including Pseudoknots Based on Stochastic Multiple Context-Free Grammar
Several grammars have been proposed for modeling RNA pseudoknotted structure. In this paper, we focus on multiple contextfree grammars (MCFGs), which are natural extension of context-free grammars and can represent pseudoknots, and extend a specific subclass of MCFGs to a probabilistic model called SMCFG. We present a polynomial time parsing algorithm for finding the most probable derivation tr...
متن کاملEstimation of Consistent Probabilistic Context-free Grammars
We consider several empirical estimators for probabilistic context-free grammars, and show that the estimated grammars have the so-called consistency property, under the most general conditions. Our estimators include the widely applied expectation maximization method, used to estimate probabilistic context-free grammars on the basis of unannotated corpora. This solves a problem left open in th...
متن کاملConvexity, Maximum Likelihood and All That
This note is meant as a gentle but comprehensive introduction to the expectation-maximization (EM) and improved iterative scaling (IIS) algorithms, two popular techniques in maximum likelihood estimation. The focus in this tutorial is on the foundation common to the two algorithms: convex functions and their convenient properties. Where examples are called for, we draw from applications in huma...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/cs/0412015 شماره
صفحات -
تاریخ انتشار 2003